A manifold learning perspective on surrogate modeling of nitrate concentration in the Kansas River

Author:

Tufillaro Nicholas1ORCID

Affiliation:

1. 1 Gybe, PO Box 1028, Corvallis, Oregon 97333, USA

Abstract

Abstract A non-linear surrogate model of nitrate concentration in the Kansas River (USA) is described. The model is an (almost) Piece-wise Linear response surface that provides a mean field approximation to the dynamics of the measured data for nitrate plus nitrite (target product) correlations to turbidity and chlorophyll-a concentrations (input variables). The method extends the United States Geological Survey’s linear procedures for surrogate data modeling allowing for better approximations for river systems exhibiting algal blooms due to nutrient-rich source waters. The model and visualization procedures illustrated in the Kansas River example should be generally applicable to many medium-size rivers in agricultural regions.

Funder

U.S. Department of Energy

Publisher

IWA Publishing

Reference13 articles.

1. Monitoring the riverine pulse: Applying high‐frequency nitrate data to advance integrative understanding of biogeochemical and hydrological processes

2. A simple metric for predicting the timing of river phytoplankton blooms

3. Chirokov A. 2023 Scattered data interpolation and approximation using radial base functions (https://www.mathworks.com/matlabcentral/fileexchange/10056-scattered-data-interpolation-and-approximation-using-radial-base-functions">https://www.mathworks.com/matlabcentral/fileexchange/10056-scattered-data-interpolation-and-approximation-using-radial-base-functions), MATLAB Central File Exchange. Retrieved May 27, 2023.

4. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers

5. Foster G. M. & Graham J. L. 2016 Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015. U.S. Geological Survey Open-File Report 2016–1040, p. 27. doi:10.3133/ofr20161040.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3