Factors affecting nitrogen removal from domestic wastewater using immobilized bacteria

Author:

Aravinthan Vasanthadevi1,Takizawa Satoshi2,Fujita Kenji3,Komatsu Kazuya1

Affiliation:

1. Department of Urban Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113, Japan

2. Environmental Engineering Program, SERD, Asian Institute of Technology, P.O. Box 4, Klongluang, Pathumthani 12120, Thailand

3. Department of Civil and Environmental Engineering, Saitama University, 255 Shimo-Okubo, Urawa 338, Japan

Abstract

The parameters affecting the nitrogen removal process by the immobilized bacteria in the anoxic-oxic process have been studied by investigating two bench scale Runs A and B. The hollow polypropylene pellets have been dosed into the anoxic reactor in Run A and into the oxic reactors of both Runs up to 24% of volume. Run B was operated with no pellets in the anoxic reactor as a control. The maximum nitrification rate of 0.4 kg NH4-N/m3d was achieved in sufficient DO (6.5 mg/l) at 15°C in the reactor with both activated sludge and immobilized micro-organisms. The volumetric nitrification rate was found to be greatly dependent on bulk oxygen concentration especially when the DO was maintained below 4 mg/l. A mathematical model developed successfully simulated the experimental results showing the variation of nitrification rate with DO. In the case of denitrification, the contribution of immobilized bacteria was prominent when lesser concentration of MLSS was present in the activated sludge in the combined immobilized and activated sludge system. The presence of immobilized bacteria in the anoxic reactor will be effective when higher nitrate nitrogen loadings are expected and the maintenance of higher MLSS than 2 g/l in an activated sludge facility is not feasible.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3