Increasing the capacity of an extended nutrient removal plant by using different techniques

Author:

Andersson B.1,Aspegren H.1,Nyberg U.1,la Cour Jansen J.2,Ødegaard H.3

Affiliation:

1. Malmö Water & Sewage Works, S-205 80 Malmö, Sweden

2. Les la Cour Jansen, Trudeslund 1, DK-3460 Birkerød, Denmark

3. Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7034 Trondheim, Norway

Abstract

A comprehensive investigation which included full scale tests was initiated towards the late 1980:s with the primary aim to find an appropriate technology for the Klagshamn wastewater treatment plant in Malmö, Sweden. The finally selected strategy enabled that a concentration of less than 8 mg N/l could be reached in the secondary effluent without having to extend either the primary or secondary treatment step at the actual load on the plant. In order to comply with a future stringent phosphorus standard however, a tertiary filtration plant has to be built. In future, it has to be anticipated that the load on the plant may be doubled due to the fact that a bridge between Malmö and Copenhagen is being built. As a consequence, it was important to continue the upgrading work by estimating the ultimate plant capacity and to look for measures to increase the capacity if necessary. By optimising the plant operation, it seems possible to reach an effluent nitrogen concentration of less than 12 mg/l at a load corresponding to the future design load. The suggested approach implies that the plant has to be operated on the margin and as a consequence the possibility to include a denitrification step as part of the filtration plant was also investigated. As a result, it was decided to build a separate denitrification step at the same time as the filtration plant was built.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3