Survey of filamentous populations in nutrient removal plants in four European countries

Author:

Eikelboom Dick H.1,Andreadakis Andreas2,Andreasen Kjaer3

Affiliation:

1. TNO Department of Environmental Biotechnology, P.O. Box 342, 7300 AH Apeldoorn, The Netherlands

2. National Technical University, Athens, Greece

3. Krüger AS, Denmark

Abstract

A joint EU research project aimed at solving activated sludge bulking in nutrient removal plants was initiated in 1993. The project started with a survey of the size and composition of the filamentous population in nutrient removal plants in Denmark, Germany, Greece and the Netherlands. The results show that biological nutrient removal process conditions indeed favour filamentous microorganisms in their competition with floc forming organisms. An increase in the size of the filamentous population resulted in a deterioration of the settling properties of the biomass, except for plants with Bio-P removal conditions. It is assumed that in the latter case the dense clusters of Bio-P bacteria increase the weight of the flocs, and compensate for the effect of the larger number of filaments. Although exceptions frequently occur, the following sequence in decreasing filamentous organism population size was observed for the process conditions indicated: - completely mixed + simultaneous denitrification; - completely mixed + intermittent aeration/denitrification; - alternating anoxic/oxic process conditions, with an anaerobic tank for biological phosphate removal (Bio-Denipho); - alternating anoxic/oxic process conditions (Bio-Denitro); - predenitrification The surveys provided little information about the effect of nutrient removal in plants with plug flow aeration basins. Simultaneous precipitation with aluminium salts nearly always resulted in a low number of filaments and a good settling sludge. The size of the filamentous organism population showed a seasonal pattern with a maximum in winter/early spring and a minimum during summer (in Greece: during autumn). This seasonal variation is primarily caused by the effect of the season on the population sizes of M. parvicella, N. limicola and Type 0092. M. parvicella is by far the most important filamentous species in nutrient removal plants. In Denmark only, Type 0041 also frequently dominates the filamentous population, but seldom causes severe bulking. Considering their frequency of occurrence, approx. 10 other filamentous micro-organisms are of minor importance. Growth of some of these species, viz. those which use soluble substrate, can be prevented by the introduction of Bio-P process conditions. M. parvicella and Type 0041 (and probably also Actinomycetes and the Types 1851 and 0092) seem to compete for the same substrates i.e. the influent particulate fraction. Most of the differences in composition of the filamentous microorganism population can be explained by whether or not premixing of influent and recycled sludge is used. In general, premixing for a short period of time followed by anoxic conditions favours Type 0041. M. parvicella seems to proliferate if the particulate fraction is first hydrolysed or if it enters the plant via an oxic zone. It is concluded that bulking in nutrient removal plants is mainly caused by filamentous species requiring the particulate fraction for their growth.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3