Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system

Author:

Nagaoka H.1,Yamanishi S.1,Miya A.2

Affiliation:

1. Department of Civil Engineering, Musashi Institute of Technology, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158, Japan

2. Center for Environmental Engineering, Ebara Research Co. Ltd, Honfujisawa 4-2-1, Fujisawa-shi, Kanagawa-ken 251, Japan

Abstract

A Laboratory-scale experiment was conducted to investigate the mechanism of the bio-fouling in the submerged membrane separation activated sludge system. Flat-sheet-type membrane module was used and the change of the pressure and the filtration resistance was measured. Two reactors were operated in parallel to investigate the influence of organic loading rate on the reactor performance. A mathematical model was developed to simulate temporal changes of suction pressure, flux and filtration resistance considering accumulation, detachment and consolidation of EPS on the membrane surface. Parameters in the model were determined so that the calculated results fit to the measured variation curves. The high load reactor (1.5g-TOC L−1 day−1) showed a sudden increase of the pressure and a decrease of flux after 40th days, which could not be recovered even by membrane cleanings, while the low load reactor (0.5g-TOC L−1 day−1) showed little increase of the pressure until 120th days. The measured pattern of the flux, the pressure and the resistance were well explained by the developed model. Using the model, influence of operational parameters, such as organic loading rate, flux and shear stress working on the membrane, on the reactor performance was evaluated. It was concluded that the flux is the most influential parameter and when the flux is more than a critical value, which is as low as 0.1 m day−1, maximum time during which the set flux can be maintained becomes very short.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3