Monitoring of fouling and biofouling in technical systems

Author:

Flemming Hans-Curt12,Tamachkiarowa Adriana2,Klahre Joachim3,Schmitt Jürgen1

Affiliation:

1. Department of Aquatic Microbiology, University of Duisburg, Geibelstr. 41, D-47057 Duisburg, Germany

2. Institure for Water Chemistry and Water Technology (IWW), Department of Microbiology, Moritzstr. 26, D-45476 Mülheim, Germany

3. Oekophil AG, Blegistr. 23, CH-6340 Baar, Switzerland

Abstract

Biofouling is a problem in many different industrial fields, causing damage of product or interfering with production processes, ranging from drinking and purified water systems to paper manufacture, heat exchange or cosmetics, pharmaceutical, medical and electronic device industries. Timely countermeasures, optimization and efficacy control depend on monitoring of biofilm growth on surfaces. As water samples give no information about site and extent of biofilms, surface sampling is mandatory. The information about biofilm development should be recorded on line, in real time and non destructively in order to permit the kinetics of deposition or removal to be followed. Three physical methods are presented here: i) a fiber optical device, ii) a differential turbidity measurement device, and iii) an FTIR flow cell. The first two methods are based on light reflectance and detect the deposition of reflecting material. Thus, they are not specific for biofilms but they allow us to detect deposit formation in situ, non destructively and in real time. The third method gives information about the chemical nature of the deposit, allowing us to identify biological material. However, this increase of information requires a significantly higher technical effort.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3