Estuary salinity prediction using a coupled GA-SVM model: a case study of the Min River Estuary, China

Author:

Fang Yihui12,Chen Xingwei13,Cheng Nian-Sheng4

Affiliation:

1. School of Geographic Science, Fujian Normal University, Fuzhou, Fujian 350007, China

2. Information Management & Engineer Department, Fujian Commerce College, Fuzhou 350012, China

3. Cultivation Base of State Key Laboratory Humid Subtropical Mountain Ecology, Fuzhou 350007, China

4. School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Ave., 639798, Singapore

Abstract

Estuary salinity predictions can help to improve water safety in coastal areas. Coupled genetic algorithm-support vector machine (GA-SVM) models, which adopt a GA to optimize the SVM parameters, have been successfully applied in some research fields. In light of previous research findings, an application of a GA-SVM model for tidal estuary salinity prediction is proposed in this paper. The corresponding model is developed to predict the salinity of the Min River Estuary (MRE). By conducting an analysis of the time series of daily salinity and the results of simulation experiments, the high-tide level, runoff and previous salinity are considered as the major factors that influence salinity variation. The prediction accuracy of the GA-SVM model is satisfactory, with coefficient of determination (R2) of 0.85, Nash–Sutcliffe efficiency of 0.84 and root mean square error of 119 (μS/cm). The proposed model performs significantly better than the traditional SVM model in terms of prediction accuracy and computing time. It can be concluded that the proposed model can successfully predict the salinity of MRE based on the high-tide level, runoff and previous salinity.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3