Determinants of adoption of household water treatment in Haiti using two analysis methods: logistic regression and machine learning

Author:

Heylen Camille1ORCID,Antoine Diona1,Ritter Michael2,Casimir Jean Marcel2,Van Dine Neil3,Jackendy Jean3,Leung Alice4,Wright Dustin4,Lantagne Daniele15

Affiliation:

1. a School of Engineering, Tufts University, Medford, MA, USA

2. b Deep Springs International, Léogâne, Haiti

3. c Haiti Outreach, Pignon, Haiti

4. d Raytheon BBN Technologies, Cambridge, MA, USA

5. e Feinstein International Center, Tufts University, Boston, MA, USA

Abstract

ABSTRACT Household water treatment (HWT) is recommended when safe drinking water is limited. To understand determinants of HWT adoption, we conducted a cross-sectional survey with 650 households across different regions in Haiti. Data were collected on 71 demographic and psychosocial factors and 2 outcomes (self-reported and confirmed HWT use). Data were transformed into 169 possible determinants of adoption across nine categories. We assessed determinants using logistic regression and, as machine learning methods are increasingly used, random forest analyses. Overall, 376 (58%) respondents self-reported treating or purchasing water, and 123 (19%) respondents had residual chlorine in stored household water. Both logistic regression and machine learning analyses had high accuracy (area under the receiver operating characteristic curve (AUC): 0.77–0.82), and the strongest determinants in models were in the demographics and socioeconomics, risk belief, and WASH practice categories. Determinants that can be influenced inform HWT promotion in Haiti. It is recommended to increase access to HWT products, provide cash and education on water treatment to emergency-impacted populations, and focus future surveys on known determinants of adoption. We found both regression and machine learning methods need informed, thoughtful, and trained analysts to ensure meaningful results and discuss the benefits/drawbacks of analysis methods herein.

Funder

Defense Sciences Office, DARPA

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3