Coagulant residues’ influence on virus enumeration as shown in a study on virus removal using aluminium, zirconium and chitosan

Author:

Christensen Ekaterina12,Myrmel Mette1

Affiliation:

1. Department of Food Safety and Infection Biology – Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 8146, Dep. 0033 Oslo, Norway

2. Norconsult AS, P.O. Box 626, 1303 Sandvika, Norway

Abstract

Abstract Research on microorganism reduction by physicochemical water treatment is often carried out under the assumption that the microbiological enumeration techniques are not affected by the presence of coagulants. Data presented here indicate that bacteriophage enumeration by plaque assay and RT-qPCR (reverse transcription quantitative polymerase chain reaction) can be affected by these water treatment chemicals. Treatment of water samples with an alkaline protein-rich solution prior to plaque assay and optimization of RNA extraction for RT-qPCR were implemented to minimize the interference. The improved procedures were used in order to investigate reduction of three viral pathogens and the MS2 model virus in the presence of three coagulants. A conventional aluminium coagulant was compared to alternative agents (zirconium and chitosan) in a coagulation-filtration system. The highest virus reduction, i.e., 99.9–99.99%, was provided by chitosan, while aluminium and zirconium reduced virus by 99.9% in colour-rich water and by 90% in water with less colour, implying an effect of coagulant type and raw water quality on virus reduction. Although charge characteristics of viruses were associated with virus reduction, the results reveal that the MS2 phage is a suitable model for aggregation and retention of the selected pathogens.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3