Response surface optimization of sludge dewatering process: synergistic enhancement by ultrasonic, chitosan and sludge-based biochar

Author:

Yang Yahong12,Yang Xingfeng13,Chen Yirong12,Li Xiaowei3,Yang Qiyong4,Li Yangying12,Ma Pengjing12,Zhang Huining1,Xu Shenghui1

Affiliation:

1. a School of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

2. b Wenzhou Engineering Institute of Pump & Value, Lanzhou University of Technology, Wenzhou, Zhejiang 325105, China

3. c School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, China

4. d College of Resources & Environment, Jiujiang University, Jiujiang, Jiangxi 332005, China

Abstract

ABSTRACT Due to the colloidal stability, the high compressibility and the high hydration of extracellular polymeric substances (EPS), it is difficult to efficiently dehydrate sludge. In order to enhance sludge dewatering, the process of ultrasonic (US) cracking, chitosan (CTS) re-flocculation and sludge-based biochar (SBB) skeleton adsorption of water-holding substances to regulate sludge dewaterability was proposed. Based on the response surface method, the prediction model of the specific resistance to filtration (SRF) and sludge cake moisture content (MC) was established. The US cracking time and the dosage of CTS and SBB were optimized. The results showed that the optimal parameters of the three were 5.08 s, 10.1 mg/g dry solids (DS) and 0.477 g/g DS, respectively. Meantime, the SRF and MC were 5.4125 × 1011 m/kg and 76.8123%, which significantly improved the sludge dewaterability. According to the variance analysis, it is found that the fitting degree of SRF and MC model is good, which also confirms that there is significant interaction and synergy between US, CTS and SBB, and the contribution of CTS and SBB is greater. Moreover, the process significantly improves the sludge's calorific value and makes its combustion more durable.

Funder

Natural Science Foundation of Gansu Province

Wenzhou Basic Social Development Science and Technology Project of China

the Outstanding Postgraduate Innovation Star Project of Gansu Provincial Department Education

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3