Risk assessment and classification prediction for water environment treatment PPP projects

Author:

Yang Ruijia1ORCID,Feng Jingchun12,Tang Jiansong3,Sun Yong4

Affiliation:

1. a Business School, Hohai University, Nanjing 211100, China

2. b Jiangsu Provincial Collaborative Innovation Center of World Water Valley, Water Ecological Civilization, Nanjing 211100, China

3. c Graduate School of Informatics, Osaka Metropolitan University, Osaka 559-8531, Japan

4. d School of Public Administration, Guangzhou University, Guangzhou 510006, China

Abstract

Abstract Water treatment public–private partnership (PPP) projects are pivotal for sustainable water management but are often challenged by complex risk factors. Efficient risk management in these projects is crucial, yet traditional methodologies often fall short of addressing the dynamic and intricate nature of these risks. Addressing this gap, this comprehensive study introduces an advanced risk classification prediction model tailored for water treatment PPP projects, aimed at enhancing risk management capabilities. The proposed model encompasses an intricate evaluation of crucial risk areas: the natural and ecological environments, socio-economic factors, and engineering entities. It delves into the complex relationships between these risk elements and the overall risk profile of projects. Grounded in a sophisticated ensemble learning framework employing stacking, our model is further refined through a weighted voting mechanism, significantly elevating its predictive accuracy. Rigorous validation using data from the Jiujiang City water environment system project Phase I confirms the model's superiority over standard machine learning models. The development of this model marks a significant stride in risk classification for water treatment PPP projects, offering a powerful tool for enhancing risk management practices. Beyond accurately predicting project risks, this model also aids in developing effective government risk management strategies.

Funder

the National Social Science Funds of China

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3