Boosting algorithms for projecting streamflow in the Lower Godavari Basin for different climate change scenarios

Author:

Mishra Bhavesh Rahul1,Vogeti Rishith Kumar2,Jauhari Rahul3,Raju K. Srinivasa2,Kumar D. Nagesh4

Affiliation:

1. a Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

2. b Department of Civil Engineering, BITS Pilani Hyderabad Campus, Hyderabad, India

3. c Department of Computer Science and Information Systems, BITS Pilani Hyderabad Campus, Hyderabad, India

4. d Department of Civil Engineering, Indian Institute of Science, Bangalore, India

Abstract

Abstract The present study investigates the ability of five boosting algorithms, namely Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Light Gradient Boosting (LGBoost), Natural Gradient Boosting (NGBoost), and eXtreme Gradient Boosting (XGBoost) for simulating streamflow in the Lower Godavari Basin, India. Monthly rainfall, temperatures, and streamflow from 1982 to 2020 were used for training and testing. Kling Gupta Efficiency (KGE) was deployed to assess the ability of the boosting algorithms. It was observed that all the boosting algorithms had shown good simulating ability, having KGE values of AdaBoost (0.87, 0.85), CatBoost (0.90, 0.78), LGBoost (0.95, 0.93), NGBoost (0.95, 0.95), and XGBoost (0.91, 0.90), respectively, in training and testing. Thus, all the algorithms were used for projecting streamflow in a climate change perspective for the short-term projections (2025–2050) and long-term projections (2051–2075) for four Shared Socioeconomic Pathways (SSPs). The highest streamflow for all four SSPs in the case of NGBoost is more than the historical scenario (9382 m3/s), whereas vice-versa for the remaining four. The effect of ensembling the outputs of five algorithms is also studied and compared with that of individual algorithms.

Funder

CSIR, New Delhi

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3