Metrics to quantify the degree of co-location of urban water infrastructure

Author:

Daulat Shamsuddin12ORCID,Roghani Bardia13ORCID,Langeveld Jeroen4ORCID,Rokstad Marius Møller1ORCID,Tscheikner-Gratl Franz1ORCID

Affiliation:

1. a Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2. b Klepp Kommune, Solavegen 1, Kleppe 4351, Norway

3. c Water and Environmental Engineering, Institute of Civil and Environmental Engineering, Norwegian University of Life Sciences (NMBU), Ås, Norway

4. d Faculty of Civil Engineering and Geosciences, TU Delft, Delft, the Netherlands

Abstract

ABSTRACT Co-located infrastructure networks such as road, water, and sewer in theory offer the possibility for integrated multi-infrastructure interventions. However, how closely these networks are aligned in space and time determines the practical extent to which such coordinated interventions can be realized. This study quantifies the spatial alignment of the aforementioned infrastructure networks and demonstrates its application for integrated interventions and potential cost savings. It proposes two metrics, namely 1) shared surface area and, 2) shared trench volume, to quantify the spatial relationship (i.e., degree of co-location) of infrastructures. Furthermore, the study demonstrates how the degree of co-location can be used as a proxy for cost-saving potential of integrated interventions compared to silo-based, single-infrastructure, interventions. Through six case studies conducted in Norwegian municipalities, the research reveals that implementing integrated interventions across road, water, and sewer networks can result in potential average cost savings of 24% in urban areas and 11% in rural areas. Utility-specific savings under different cost-sharing scenarios were also analysed. To identify the yearly potential of integrated multi-infrastructure interventions, future work should add the temporal alignment of rehabilitation of infrastructures (i.e., time of intervention need for the infrastructures).

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3