Estimation of instantaneous peak flows in Canadian rivers: an evaluation of conventional, nonlinear regression, and machine learning methods

Author:

Khaliq Muhammad Naveed1ORCID

Affiliation:

1. 1 National Research Council Canada, Ocean Coastal and River Engineering Research Centre, Ottawa, ON K1A 0R6, Canada

Abstract

ABSTRACT Instantaneous peak flows (IPFs) are often required to derive design values for sizing various hydraulic structures, such as culverts, bridges, and small dams/levees, in addition to informing several water resources management-related activities. Compared to mean daily flows (MDFs), which represent averaged flows over a period of 24 h, information on IPFs is often missing or unavailable in instrumental records. In this study, conventional methods for estimating IPFs from MDFs are evaluated and new methods based on the nonlinear regression framework and machine learning architectures are proposed and evaluated using streamflow records from all Canadian hydrometric stations with natural and regulated flow regimes. Based on a robust model selection criterion, it was found that multiple methods are suitable for estimating IPFs from MDFs, which precludes the idea of a single universal method. The performance of machine learning-based methods was also found reasonable compared to conventional and regression-based methods. To build on the strengths of individual methods, the fusion modeling concept from the machine learning area was invoked to synthesize outputs of multiple methods. The study findings are expected to be useful to the climate change adaptation community, which currently heavily relies on MDFs simulated by hydrologic models.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3