Hybrid modelling of nitrogen removal by biofiltration using high-frequent operational data

Author:

Serrao Marcello12ORCID,Jauzein Vincent3,Juran Ilan4,Tassin Bruno1,Vanrolleghem Peter2

Affiliation:

1. a Laboratoire eau environnement et systèmes urbaines (LEESU), Ecole des Ponts, Université Paris Est Créteil, Institut Polytechnique de Paris, Créteil F-94010, Marne-la-Vallée, France

2. b modelEAU, Université Laval, 1065 av de la Médecine, Québec, QC G1V 0A6, Canada

3. c SIAAP, Direction Innovation, 82 av Kléber, Colombes 92700 France

4. d W-SMART, 9 rue Victor Schoelcher, Paris 75014, France

Abstract

ABSTRACT In this research, a parallel hybrid model is presented for the simulation of nitrogen removal by submerged biofiltration of a very large-size wastewater treatment plant. This hybrid model combines a mechanistic and a machine learning model to produce accurate predictions of water quality variables. The models are calibrated and validated using detailed and quality-controlled operational data collected over a period of 3.5 months in 2020. The mechanistic model is a modified activated sludge model that describes the biological, physical and chemical processes taking place in a biofilm reactor based on the domain knowledge of these processes. A three-layer feed-forward artificial neural network with a rectified linear activation function that aims to reduce the mechanistic model's residual error and then correct its output. The results show how the hybrid model outperforms and significantly reduces the size of the mechanistic model's prediction errors of the effluent nitrate concentration from a relative mean error of 12% (mechanistic model) to 2% (hybrid model) during training. The error on nitrate simulations increases to 8% during hybrid model testing, still significantly lower than the error of the mechanistic model. These results support future operational applications of hybrid biofilm models, such as in digital twins.

Funder

Syndicat Interdépartemental pour l’Assainissement de l’Agglomération Parisienne

Natural Sciences and Engineering Research Council of Canada

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3