Development of microfiltration membranes based on polysulfone and polyetherimide blends

Author:

Gunes-Durak Sevgi1ORCID

Affiliation:

1. 1 Department of Environmental Engineering, Faculty of Engineering-Architecture, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey

Abstract

ABSTRACT In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73–89.36%, contact angles 69.18–85.81%, and average pure water fluxes 257.25–375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.

Funder

Nevşehir Hacı Bektaş Veli Üniversitesi

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3