Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods

Author:

Wu Ying1ORCID,Zhang Zhiming2,Qi Xiaotian1,Hu Wenhan1,Si Shuai1

Affiliation:

1. a Department of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, No. 1 Zhanlanguan Road, Beijing 100044, China

2. b Beijing Climate Change Response Research and Education Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

ABSTRACT Floods are one of the most destructive disasters that cause loss of life and property worldwide every year. In this study, the aim was to find the best-performing model in flood sensitivity assessment and analyze key characteristic factors, the spatial pattern of flood sensitivity was evaluated using three machine learning (ML) models: Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), and Random Forest (RF). Suqian City in Jiangsu Province was selected as the study area, and a random sample dataset of historical flood points was constructed. Fifteen different meteorological, hydrological, and geographical spatial variables were considered in the flood sensitivity assessment, 12 variables were selected based on the multi-collinearity study. Among the results of comparing the selected ML models, the RF method had the highest AUC value, accuracy, and comprehensive evaluation effect, and is a reliable and effective flood risk assessment model. As the main output of this study, the flood sensitivity map is divided into five categories, ranging from very low to very high sensitivity. Using the RF model (i.e., the highest accuracy of the model), the high-risk area covers about 44% of the study area, mainly concentrated in the central, eastern, and southern parts of the old city area.

Funder

the National Key R&D Program of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3