Urban flooding simulation and flood risk assessment based on the InfoWorks ICM model: A case study of the urban inland rivers in Zhengzhou, China

Author:

Wei Huaibin1,Wu Heng2,Zhang Liyuan3,Liu Jing45

Affiliation:

1. a School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. b School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. c Shanghai Water Engineering, Design and Research Institute Co. Ltd, Shanghai 200061, China

4. d College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046 China

5. e Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China

Abstract

ABSTRACT Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and 100a, alongside rainfall durations of 1 and 24 h. Subsequently, the H-V (hazard–vulnerability) method was applied to evaluate urban flooding risk. Three indicators were selected for each of hazard factors and vulnerability factors. The relative weight values of each indicator factor were calculated using the AHP method. The result shows that (1) flood depth, rate, and duration escalate with longer rainfall return periods, yet decrease as the duration of rainfall increases; (2) as the rainfall return period lengthens, the proportion of node overflow rises, whereas it diminishes with longer rainfall durations, leading to an overall overloaded state in the pipeline network; and (3) the distribution in the research area is mainly low-risk areas, with very few extremely high-risk. Medium to high-risk areas are mainly distributed on both sides of the river, in densely built and low-lying urban areas. This study demonstrates that the model can accurately simulate urban flooding and provide insights for flood analyses in comparable regions.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Talents in Universities of Henan Province

China Scholarship Council

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3