Application of horizontal-flow anaerobic immobilized biomass reactor for bioremediation of acid mine drainage

Author:

Rodriguez R. P.1,Vich D. V.2,Garcia M. L.3,Varesche M. B. A.2,Zaiat M.2

Affiliation:

1. Universidade Federal de Alfenas (UNIFAL), Instituto de Ciência e Tecnologia (ICT), Campus Poços de Caldas, Rodovia José Aurélio Vilela, 11.999, CEP: 37715-400, Poços de Caldas, MG, Brazil

2. Universidade de São Paulo (USP), Escola de Engenharia de São Carlos (EESC), Centro de Pesquisa, Desenvolvimento e Inovação em Engenharia Ambiental, Laboratório de Processos Biológicos, Av. João Dagnone, 1100, CEP: 13563-120, São Carlos, SP, Brazil

3. Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Departamento de Petrologia e Metalogenia, Av. 24A 1515, CEP: 13506-900, Rio Claro, SP, Brazil

Abstract

The production of low-pH effluent with sulfate and metals is one of the biggest environmental concerns in the mining industry. The biological process for sulfate reduction has the potential to become a low-cost solution that enables the recovery of interesting compounds. The present study analyzed such a process in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor, employing ethanol as the carbon and energy source. Results showed that a maximal efficiency in the removal of sulfate and ethanol could only be obtained by reducing the applied sulfate load (225.1 ± 38 g m−3 d−1). This strategy led to over 75% of chemical oxygen demand (COD) and sulfate removal. Among the COD/SO42− studied ratios, 0.67 showed the most promising performance. The effluent's pH has naturally remained between 6.8 and 7.0 and the complete oxidation of the organic matter has been observed. Corrections of the influent pH or effluent recirculation did not show any significant effect on the COD and sulfate removal efficiency. Species closely related to strains of Clostridium sp. and species of Acidaminobacter hydrogenomorfans and Fusibacter paucivorans that can be related to the process of sulfate reduction were found in the HAIB reactors when the initial pH was 5 and the COD/SO42− ratio increased to 1.0.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3