Sediment resuspension and light conditions in some shallow Dutch lakes

Author:

Blom G.,van Duin E. H. S.,Lijklema L.

Abstract

The relationship between sediment resuspension and light conditions has been studied in three shallow Dutch lakes. In shallow eutrophic lakes, the contributions of algae and suspended sediments to light attenuation are usually dominant. Wind induced resuspension of bottom sediment and sedimentation often determine the dynamics and the spatial variability of the suspended solids concentration and the light attenuation coefficient. A model is discussed relating the suspended solids concentration and light attenuation coefficient to the orbital velocity, induced by waves, and to the fall velocity of solids. Using experimental data, the relationships between fall velocity, organic matter content and the specific vertical attenuation coefficient are analyzed. Differences in the specific vertical attenuation coefficient and in fall velocities of sediment fractions, are related to differences in particle size as well as differences in composition. The contribution of (resuspended) particles to the suspended solids concentration and to light attenuation is primarily due to slow settling sediment fractions which are rich in organic matter. So in modelling light attenuation dynamics especially these fractions are of interest. Heavier fractions can be disregarded. A model for the relationship between resuspension and light attenuation dynamics, based on this conclusion, has been tested successfully for 2 shallow Dutch lakes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3