Influence of fluid velocities on the degradation of volatile aromatic compounds in membrane bound biofilms

Author:

Debus O.1,Baumgärtl H.2,Sekoulov I.1

Affiliation:

1. DFG Graduate School of Biotechnology, Technical University Hamburg-Harburg (TUHH), Gewaesserreinigungstechnik, Eissendorfer Str. 42, D-21071D-21071 Hamburg, Germany

2. Max-Planck-Institut (MPI) für Molekulare Physiologie, Rheinlanddamm 201, D-44139 Dortmund, Germany

Abstract

In a cylindrical laboratory reactor, in which a biofilm was grown on a gas-permeable silicone membrane tubing through which oxygen was supplied, the removal of xylene from the bulk fluid was investigated. Two days after starting the experiment 98 % of xylene was degraded and was no longer transferred into the gas phase. Using polarographic microelectrodes the thickness of the biofilm and the boundary layer as well as the oxygen profiles in both layers have been measured. The fluid velocity had three major influences: it affected the boundary layer thickness, the biofilm density and the sloughing of the biofilm. At higher fluid velocities (Reynolds numbers) high oxygen consumption within the biofilm could be quantified. At these higher fluid velocities the biofilm was grown with a higher density and adhered better to the membrane. By application of higher oxygen partial pressures in the gas phase and higher fluid velocities in the liquid phase, the mean degradation efficiency was increased from 38 to 96 %. A computer simulation showed good correspondence with the experimental investigations and allowed a total process analysis. Membrane-biofilm reactors are preferred for technical applications as, e.g., treatment of landfill leachates with high contents of volatile organics.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3