Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins

Author:

Fang H. H. P.,Chui H. K.,Li Y. Y.,Chen T.

Abstract

UASB process consistently removed 84% of COD in wastewater with hydrolyzed proteins for loading rates up to 32 g-COD/L/day, corresponding to a food-to-microorganisms ratio of 0.81 g-COD/g-VSS/day, at 37°C and a hydraulic retention time of 9 hours. Of all the COD in the wastewater, about 74% was converted to methane, 16% was unhydrolyzed proteins which remained refractory to degradation, and 10% converted to biomass. The average sludge yield was 0.079 g-VSS/g-COD. There was no noticeable foaming and sludge flotation. The maximum specific methane production rate in the reactor was 0.60 g-methane-COD/g-VSS/day, which was comparable to the specific methanogenic activity (SMA) of 0.59 g-methane-COD/g-VSS/day observed by the serum vial test using hydrolyzed proteins as substrate. The SMA using acetate as substrate was 0.89 g-methane-COD/g-VSS/day, higher than those (0.39–0.59 g-methane-COD/g-VSS/day) using formate, propionate and butyrate, individually, as substrate. The granules did not have a layered structure nor a predominant type of bacteria. Instead, it had a densely packed structure with interwined bacteria of diverse morphologies with scattered microcolonies of Methanothrix, Methanosarcina, and justapositioned syntrophic associations.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3