Biological Early Warning Systems for Surface Water and Industrial Effluents

Author:

Balk F.,Okkerman P. C.,van Helmond C. A. M.,Noppert F.,van der Putte I.

Abstract

Within the framework of the International Rhine Action Programme and the EC ACE-Programme in the field of the environment (regulation EC.224/87) the sensitivity and reliability of biological early warning systems are being tested. The effectiveness of these systems for continuous water quality monitoring is being assessed, using surface water and industrial effluents. The systems tested are a fish and a waterflea early warning system. From the results it is concluded that both types of biological early warning systems in combination with physico-chemical monitoring increase the effectiveness of monitoring pollution levels in surface water. Fish early warning systems can be important tools in reducing water pollution by industries.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centinela: an early warning system for the water quality of the Cauca River;Journal of Hydroinformatics;2014-06-05

2. The use of Tubificidae in a biological early warning system;Environmental Pollution;1999-04

3. Biomonitoring;Water Environment Research;1995-06

4. Ecotoxicology and pollution—Key issues;Marine Pollution Bulletin;1995-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3