Denitrification in biofilms with biologically hydrolysed sludge as carbon source

Author:

Æsøy A.,Ødegaard H.

Abstract

This paper is a contribution to the understanding of the possibilities and limitations of the socalled HYPRO-concept, a compact process design for nutrient removal where the carbon source for the denitrification process is provided by hydrolysis of the pre-precipitated sludge. The objective of the study was to investigate how efficiently biologically hydrolysed sludge is utilized in a biofilm process. The results show that only the volatile fatty acids in the hydrolysed sludge were utilized as carbon source. The denitrification kinetics were not influenced by the particulate and colloidal materials that adsorbed to the biofilm. The biofilms in the present study were thick (> 900 μm) and porous, and the denitrification rate could be described by a hyperbolic Monod-type function with respect to both the nitrate and the volatile fatty acids concentration. The diffusion resistance is included and expressed by an artificial “half-saturation” constant, K*. The maximum denitrification rate was rNO3−Nmax = 0.567 g NO3-N/g VS · d, K*NO3−N = 1.4 mg NO3-N/l and K*CODVFA = 3.0 mg CODVFA/l. The stoichiometric consumption ratio between soluble COD and nitrate was found to be 4.5 ± 0.6 g CODs/g NO3-N. The specific growth rate was μ = 0.61 ± 0.12 d−1 and the yield coefficient was YCOD = 0.22 ± 0.04 g VS/g COD.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3