Growth Characteristics of Three Macrophyte Species Growing in a Natural and Constructed Wetland System

Author:

Adcock P. W.,Ganf G. G.

Abstract

Total, above and below ground biomass, growth, and tissue nutrient concentration of three species growing in two contrasting environments (a horizontal flow, constructed wetland fed tertiary effluent at Bolivar, South Australia, and a natural wetland, Bool Lagoon, south-eastern South Australia) were compared to determine relative performance of each species. Overall Baumea articulata and Phragmites australis performed poorly in trenches compared with natural wetland. Total biomass was 4.0 and 2.7, compared with 7.7 and 10.9 kg/m2 however, above ground (AG)/below ground (BG) ratios were similar at both locations (1 (Baum) and 0.42(Phrag)). Below ground mass was restricted to the top 25cm in the trenches but penetrated to > 50cm in the natural wetland. Phragmites showed a marked decline in standing biomass during the winter period in both environments but Baumea increased standing biomass in the trenches. Although the mean tissue nutrient concentrations of N and P for plants grown in trenches were higher than their natural counterparts [3.18(Baum), 2.56(Phrag) vs. 0.68(Baum), 0.49(Phrag) mg P/g DWt.; 12.99(Baum), 23.06(Phrag) vs. 5.39(Baum), 8.92(Phrag) mg N/g DWt.], this was offset by the lower biomass of the plants in the trenches. In contrast, the semi-emergent Triglochin procerum performed exceptionally well in the trenches, compared with the other species, and with itself growing in Bool Lagoon. Total biomass was 15.4 kg/m2, AG/BG ratio was 6. Triglochin continued to grow vigorously throughout the winter and had a mean tissue concentration of 5.19 mg P, 22.63 mg N and 368 C/g dry weight. These data suggest that the effective removal of nitrogen and phosphorus by harvesting was 5 times higher for Triglochin than for Baumea or Phragmites in the trenches. The nitrogen concentrations in Triglochin suggest a protein content of 16–18% which compares favourably with lucerne.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3