Performance evaluation of anoxic–oxic–anoxic processes in illuminated biofilm reactor (AOA-IBR) treating septic tank effluent

Author:

Kamngam Sittikorn1,Koottatep Thammarat1,Surinkul Nawatch2,Chaiwong Chawalit1,Polprasert Chongrak3

Affiliation:

1. Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120, Thailand

2. Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand

3. Department of Civil Engineering, Faculty of Engineering, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand

Abstract

Abstract This study was conducted to evaluate the treatment performance of the anoxic–oxic–anoxic processes in illuminated biofilm reactor (AOA-IBR) in removing organics and nitrogen contained in septic tank effluent. The 27 L of the AOA-IBR was illuminated with red light-emitting diode (LED) lamps (peak wavelength of 635 nm, intensity of 100 μmol/(m2s)). Three types of biofilm media, namely ball ring®, plastic sheets and zeolite beads, were placed in the anoxic, oxic and anoxic zones, respectively, of the reactor to support the growth of microalgal–bacterial biofilm. The AOA-IBR was continuously fed with septic tank effluent and operated at hydraulic retention times (HRTs) of 24, 48 and 72 h. The experimental results found the increases in chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH4-N) removal efficiencies with increasing HRTs in which the HRT of 72 h resulted in 78.6, 72.8 and 90.6% removals of COD, TN and NH4-N, respectively. The effluent quality of the AOA-IBR could meet the ISO 30500 effluent standards for Non-Sewered Sanitation Systems. The predominant microalgal biofilm species was observed to be Oscillatoria sp., while Proteobacteria was the predominant bacterial phylum found in the biofilm growing in the reactor. The above results suggested the applicability of the AOA-IBR in improving septic tank treatment performance which should result in better water pollution control.

Publisher

IWA Publishing

Subject

Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3