Relation of organic fractions in fresh and stored fecal sludge and foodwaste to biogas production

Author:

Maqbool Nida12,Sam Stanley1,Jamal Khan Sher2,Strande Linda1ORCID

Affiliation:

1. a Sandec: Department of Water, Sanitation and Solid Waste for Development, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse, 133, CH-8600 Dübendorf, Switzerland

2. b Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, Pakistan

Abstract

Abstract There is limited understanding of the potential for anaerobic digestion and biogas production from fecal sludge. In this study, biomethane potential (BMP) tests from fresh, stored, and dewatered fecal sludge, together with co-digestion with fresh foodwaste, revealed that fresh fecal sludge produced similar cumulative biogas (CBG) to fresh foodwaste (615–627 mL/gVS), while stored fecal sludge showed a wide range of gas production (13–449 mL/gVS). Co-digestion significantly enhanced the CBG production of fresh (1.2×), dewatered (1.5×), and stored (29–36×) fecal sludge. In BMP tests with the higher range of gas production, a biphasic CBG production was observed, with degradation of readily biodegradable organics occurring during the first week. The first-order rate coefficients indicated hydrolysis limitation, which was also confirmed by the presence of slow-growing methanogens (Halobacterota). Priming with co-digestion significantly enhanced CBG from stored fecal sludge. The physical–chemical metrics VS/TS and TOC/TN were not predictors of biogas production, while BOD/COD and sCOD were better indicators, suggesting that metrics of stabilization representing biologically available fractions are more representative than metrics of entire pools of organic matter. This study suggests that biogas production from anaerobic digestion is viable for fresh fecal sludge, whereas for stored fecal sludge it requires co-treatment or pretreatment.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Eawag Partnership Program

Higher Education Commision, Pakistan

ETH4D

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3