Technology choices in scaling up sanitation can significantly affect greenhouse gas emissions and the fertiliser gap in India

Author:

Kulak Michal1,Shah Nimish2,Sawant Niteen1,Unger Nicole1,King Henry1

Affiliation:

1. UNILEVER Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook MK44 1LQ, UK

2. UNILEVER Safety and Environmental Assurance Centre (SEAC), 64 Main Road, Whitefield, Bangalore 560066, India

Abstract

Nearly 800 million people in India lack access to adequate sanitation. The choice of technology for addressing this need may have important sustainability implications. In this study, we used life cycle assessment to compare environmental impacts and nutrient recovery potentials of four different options for providing everyone in India with access to improved sanitation: (i) centralised wastewater treatment with sequential batch reactors (SBR), (ii) twin-pit latrines, (iii) latrines with source separation only and (iv) latrines with source-separation of urine and faeces connected to biogas plants. Results revealed large variability. Closing the sanitation gap through pit latrines would be expected to cause large increases of India's annual greenhouse gas (GHG) emissions, equivalent to 7% of current levels. Source separation only and centralised plants with SBR will be associated with lower GHG emissions, while the biogas scenario shows a potential to provide net emission reduction. The study revealed that source separating systems can provide significant quantities of plant available nitrogen and phosphorus at the country level. Future research should include more technological options and regions. Methodology piloted in this study can be integrated into the planning and design processes for scaling up sanitation in India and other countries.

Publisher

IWA Publishing

Subject

Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3