Treatment of fecal matter by smoldering and catalytic oxidation

Author:

Saberi Shadi1,Samiei Kasra1,Iwanek Ewa1,Vohra Samoil1,Farkhondehkavaki Masoumeh1,Cheng Yu-Ling1

Affiliation:

1. University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada

Abstract

Abstract There is a strong need for transformative sanitation systems in the areas of the world where open defecation habits and/or inadequate sewage treatment methods and facilities exist. This paper describes an innovative thermally efficient solid waste treatment process as a basis for an off-the-grid, non-sewered toilet in order to address this need. Human feces are combusted in a continuous-cyclic manner using two stages of smoldering and catalytic oxidation. It has been shown that thermal coupling of the two stages creates a self-sustained reactor that can combust wet fecal material containing up to 3.2 parts water to 1 part dry matter – equivalent of water content in healthy human feces – without the need for external heating, known as the ultimate challenge in direct combustion of human feces. Furthermore, it has been shown that air flow rate can be reliably used as a controlling mechanism for fecal destruction rate which means the same reactor could be operated for various and varying input rates. The present work demonstrates the potential for manufacturing low-cost, low-energy consuming sanitation systems that are more easily accessible to communities in need of such systems.

Funder

Bill and Melinda Gates Foundation

Publisher

IWA Publishing

Subject

Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3