The Performance Comparison of SC-PPM Receiver Models

Author:

SONMEZ Mehmet1ORCID

Affiliation:

1. OSMANİYE KORKUT ATA ÜNİVERSİTESİ

Abstract

Visible light communication (VLC) technology has arisen as promising candidate to solve the critical challenges of wireless communication networks. In particular, the evolving explosion in use of internet services requiring high bandwidth will soon become a great potential problem among the service provider. Meanwhile, this paper describes a physical layer solution to provide data transmission in the VLC networks. In the paper, it is aim to examine the performance comparison of SC-PPM (Subcarrier Pulse Position Modulation) demodulator schemes. It is considered three receiver techniques to assemble the demodulator techniques to SC-PPM receiver system. Firstly, the traditional PPM (T-PPM) demodulator has been applied on the SC-4PPM receiver system to estimate the slot that includes high frequency signal that is referred to as subcarrier signal. To successfully detect the bits by using traditional PPM receiver, it must be known the dimming level of received SC-4PPM signal. This is a serious problem to ensure data transmission in the real-time VLC systems due to challenge of providing the variable dimming level knowledge at the receiver side. In another receiver model that is referred to as PD (Peak Detector), it is aim to detect peak values of slot with high frequency signal. The disadvantage of this system is that BER (Bit Error Rate) performance depends the difference between peak and bottom values of subcarrier filled slot. Hence, second method is improved to achieve the similar BER performance at all dimming levels between 12.5% and 87.5%. This receiver model is called as IPD in the paper. In brief, it is reported for the first time, it has been employed the PD and the IPD algorithms for the SC-PPM receiver schemes. In addition to this, it is given a theoretical framework for both the traditional PPM and the improved receiver schemes in VLC-SC-PPM schemes. Moreover, it has been investigated how the SC-PPM receiver schemes are affected by brightness level.

Publisher

Hitit University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3