Evaluation and Economics of a Rotating Cultivator in Bok Choy, Celery, Lettuce, and Radicchio

Author:

Fennimore Steven A.,Smith Richard F.,Tourte Laura,LeStrange Michelle,Rachuy John S.

Abstract

A commercial intrarow rotating cultivator was tested for weed removal and impact on hand-weeding times in bok choy, celery, lettuce, and radicchio. The rotating cultivator was tested as an automated crop thinner and weeder in direct-seeded bok choy and lettuce as an alternative to hand-thinning and -weeding. The rotating cultivator utilized machine-vision guidance to align a rotating disk with the crop plant to be saved and to remove weeds and undesired crop plants. The rotating cultivator was compared to a standard interrow cultivator, which could not remove weeds from the plant line. Main plots were cultivator type, rotating, or standard, and subplots were herbicides: pronamide for lettuce or prometryn for celery. Weed densities, hand-weeding times, crop stand, and yields were monitored. Economic analysis was performed on a subset of the data. The intrarow rotating cultivator was generally more effective than the standard interrow cultivator for reducing weed densities and hand-weeding times. However, the rotating cultivator reduced seeded lettuce stands by 22 to 28% when compared to hand-thinning and standard cultivation, resulting in lower yields and net returns. In transplanted celery, lettuce, and radicchio, the rotating cultivator removed more weeds than the standard cultivator, and reduced stands by just 6 to 9% when compared to the standard cultivator. In transplanted lettuce, the rotating cultivator was more precise and did less damage to the crop. Because transplanted crops were larger than the weeds, they were more easily differentiated using this technology. Net returns were therefore similar between the two cultivators. What is needed for celery and leafy vegetables is an effective intrarow weed removal system that reduces or eliminates the need for hand-weeding yet does not reduce yields. The rotating cultivator was developed for transplanted crops, where it performs adequately, but it cannot be recommended in the seeded crops evaluated.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference32 articles.

1. Weed Management in Lettuce (Lactuca Sativa) with Preplant Irrigation

2. Evaluation of Integrated Practices for Common Purslane (Portulaca oleracea) Management in Lettuce (Lactuca sativa)1

3. Siemens MC , Herbon R , Gayler RR , Nolte KD , Brooks D (2012) Automated Machine for Thinning Lettuce—Evaluation and Development. St. Joseph, MI: ASABE American Society of Agricultural and Biological Engineers paper 12–1338169. Pages 14 p.

4. Smith RF (2009) Celery Herbicide Treatment Table. http://www.ipm.ucdavis.edu/PMG/r104700311.html. Accessed June 7, 2013

5. Anonymous (2013) The Compositae Genome Project. http://compgenomics.ucdavis.edu/compositae_data.php?name=Cichorium+intybus. Accessed June 20, 2013

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3