Characterization and Modeling of Itchgrass (Rottboellia cochinchinensis) Biphasic Seedling Emergence Patterns in the Tropics

Author:

Leon Ramon G.,Izquierdo Jordi,González-Andújar∗ José Luis

Abstract

Itchgrass is an aggressive weed species in tropical agroecosystems. Because of phytosanitary restrictions to exports, pineapple producers must use a zero tolerance level for this species. An understanding of itchgrass seedling emergence would help producers to better time POST control. The objective of the present study was to characterize itchgrass seedling emergence patterns and develop a predictive model. Multiple field experiments were conducted in four agricultural fields in Costa Rica between 2010 and 2011 for a total of 9 site-years. Itchgrass consistently showed a biphasic emergence pattern, with a first emergence phase that was faster and more consistent across site-years than the second one. Weibull + logistic models based on chronological time (R2adj= 0.92) and thermal time withTbase= 20 C (R2adj= 0.92) provided the best fit for the combined emergence data for two experimental locations in 2010. Both models predicted itchgrass seedling emergence adequately for most site-years, but the thermal-time model was more accurate (R2adj= 0.64 to 0.86) than the chronological model (R2adj= 0.31 to 0.74), especially when temperatures were high. Both models showed high accuracy in the first emergence phase but tended to underestimate emergence rate during the second phase. The models predicted 50% emergence at 14 d or 80 growing degree days and the stabilization of the first emergence phase at approximately 25 d or 200 growing degree days. Thus, these models can be used to properly time itchgrass POST control. More research is needed to understand the regulatory mechanisms responsible for the variability of the second emergence phase.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3