Author:
Bagavathiannan Muthukumar V.,Norsworthy Jason K.,Scott Robert C.
Abstract
Whether season-long weed control can be achieved in a furrow-irrigated rice system with similar herbicide inputs to that of a flooded system is not known. Field experiments were conducted in 2007 and 2008 at Pine Tree, AR to evaluate different herbicide programs on the weed control efficacy and rice grain yield in furrow-irrigated and flooded rice production systems. Six herbicide programs were evaluated with and without additional late-season “as-needed” herbicide treatments. Minor injury to rice was noted for quinclorac plus propanil. However, the injury was transient and the plants fully recovered. Overall weed control was greater in the flooded system compared with the furrow-irrigated system (up to 20% greater), because flooding effectively prevented the emergence of most terrestrial weeds. In addition, rice grain yields were 13 to 14% greater in flooded compared with furrow-irrigated plots. Irrespective of the irrigation system, herbicide programs that contained a PRE-applied herbicide provided greater weed control and resulted in greater yield compared with those that did not contain PRE-applied herbicide, indicative of the importance of early-season weed control in achieving higher grain yields. On the basis of weed control, yield, and weed treatment cost, the herbicide program with clomazone PRE followed by propanil at four- to five-leaf rice was more efficient than other programs evaluated in both irrigation systems. However, furrow-irrigated plots required as-needed herbicide applications, which were applied after the four- to five-leaf rice stage when two or more plots within a program exhibited ≤ 80% control for any of the weed species. This suggests that furrow-irrigated rice production demands additional weed management efforts and thereby increases production costs. There is also a possibility for substantial yield reduction in the furrow-irrigated system compared with the flooded system. Nevertheless, furrow-irrigated rice production can still be a viable option under water-limiting situations and under certain topographic conditions.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献