Germination Ecology of Goosegrass (Eleusine indica): An Important Grass Weed of Rainfed Rice

Author:

Chauhan Bhagirath S.,Johnson David E.

Abstract

Goosegrass is considered one of the most important grassy weeds of rice, particularly in rain-fed environments. Experiments were conducted in laboratory, screenhouse, and field to study the germination ecology of goosegrass seeds. In the laboratory, germination was greater at higher alternating temperatures (30/20 and 35/25 C) than at the lowest alternating temperatures (25/15 C). An after-ripening period of at least 3 mo was required to improve the germination of goosegrass. Germination was tolerant of salt stress but sensitive to a high degree of water stress. A pH range of 5 to 10 did not influence seed germination (92 to 95%). In the screenhouse study, seedling emergence of goosegrass was greatest (82%) for seeds placed on the soil surface, but decreased exponentially after that, no seedlings emerged at a burial depth of 8 cm. Seedling emergence and seedling dry matter declined markedly with the addition of crop residue to the soil surface at rates equivalent to 4 to 6 ton (t) ha−1. In the field, seedling emergence of goosegrass was greater under zero-till (ZT; 16 to 18%) than under minimum tillage (MINT; 8 to 11%). Because seedling emergence was greater from surface-sown seeds and emergence was favored by ZT, this species is likely to become a problematic weed in ZT systems. The information gained from this study could be used in developing effective weed management strategies.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference33 articles.

1. Heap I. 2007. The International Survey of Herbicide Resistant Weeds. www.weedscience.com (verified 3rd August 2007).

2. Light Transmittance, Soil Temperature, and Soil Moisture under Residue of Hairy Vetch and Rye

3. Influence of tillage systems on weed population dynamics and control in the northern corn belt of the United States;Buhler;Adv. Agron.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3