Detecting an Invasive Shrub in Deciduous Forest Understories Using Remote Sensing

Author:

Wilfong Bryan N.,Gorchov David L.,Henry Mary C.

Abstract

Remote sensing has been used to directly detect and map invasive plants, but has not been used for forest understory invaders because they are obscured by a canopy. However, if the invasive species has a leaf phenology distinct from native forest species, then temporal opportunities exist to detect the invasive. Amur honeysuckle, an Asian shrub that invades North American forests, expands leaves earlier and retains leaves later than native woody species. This research project explored whether Landsat 5 TM and Landsat 7 ETM+ imagery could predict Amur honeysuckle cover in woodlots across Darke and Preble Counties in southwestern Ohio and Wayne County in adjacent eastern Indiana. The predictive abilities of six spectral vegetation indices and six reflectance bands were evaluated to determine the best predictor or predictors of Amur honeysuckle cover. The use of image differencing in which a January 2001 image was subtracted from a November 2005 image provided better prediction of Amur honeysuckle cover than the use of the single November 2005 image. The Normalized Difference Vegetation Index (NDVI) was the best-performing predictor variable, compared to other spectral indices, with a quadratic function providing a better fit (R2 = 0.75) than a linear function (R2 = 0.65). This predictive model was verified with 15 other woodlots (R2 = 0.77). With refinement, this approach could map current and past understory invasion by Amur honeysuckle.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3