Weed Control with Liquid Carbon Dioxide in Established Turfgrass

Author:

Mahoney Denis J.,Jeffries Matthew D.,Gannon Travis W.

Abstract

In recent years, increasing implementation of biological, cultural, and mechanical weed-control methods is desired; however, many of these techniques are not viable in established turfgrass systems. The use of freezing or frost for weed control has previously been researched; however, is not well elucidated. Field and greenhouse experiments were conducted to evaluate liquid carbon dioxide (LCD) for weed control in established turfgrass systems. LCD was applied with handheld prototypes that were modified to reduce the amount of LCD required for weed control. Common annual and perennial turfgrass weeds included common chickweed, corn speedwell, goosegrass, large crabgrass, smooth crabgrass, Virginia buttonweed, and white clover. Turfgrass tolerance was evaluated on the following species: hybrid bermudagrass, Kentucky bluegrass, tall fescue, and zoysiagrass. The final modification allowed for lower output (0.5 kg LCD min−1) when compared with the initial prototype (3 kg LCD min−1). In general, weed control increased as LCD increased. When comparing weed species life cycles, annuals were controlled more than perennials (P < 0.0001) at 14 and 28 d after treatment (DAT). Further, exposure time affected control as white clover, Virginia buttonweed, and large crabgrass control was greater (18, 14, 15%, respectively) from the longer exposure time (30 vs. 15 s), although equivalent amounts of LCD (30 kg m−2) were applied. These data also suggest that plant maturity affects control, as large crabgrass control in one- to two- and three- to four-leaf stages (> 90%) was greater than in the one- to two-tiller stage (< 70%). Turfgrass injury at 7 DAT was unacceptable (> 30%) on all species, but declined to 0% by 28 DAT. These data suggest that LCD has the potential to provide an alternative for weed control of select species where synthetic herbicides are not allowed or desired.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3