Utility of Multispectral Imagery for Soybean and Weed Species Differentiation

Author:

Gray Cody J.,Shaw David R.,Gerard Patrick D.,Bruce Lori M.

Abstract

An experiment was conducted to determine the utility of multispectral imagery for identifying soybean, bare soil, and six weed species commonly found in Mississippi. Weed species evaluated were hemp sesbania, palmleaf morningglory, pitted morningglory, prickly sida, sicklepod, and smallflower morningglory. Multispectral imagery was analyzed using supervised classification techniques based upon 2-class, 3-class, and 8-class systems. The 2-class system was designed to differentiate bare soil and vegetation. The 3-class system was used to differentiate bare soil, soybean, and weed species. Finally, the 8-class system was designed to differentiate bare soil, soybean, and all weed species independently. Soybean classification accuracies classified as vegetation for the 2-class system were greater than 95%, and bare soil classification accuracies were greater than 90%. In the 3-class system, soybean classification accuracies were 70% or greater. Classification of soybean decreased slightly in the 3-class system when compared to the 2-class system because of the 3-class system separating soybean plots from the weed plots, which was not done in the 2-class system. Weed classification accuracies increased as weed density or weeks after emergence (WAE) increased. The greatest weed classification accuracies were obtained once weed species were allowed to grow for 10 wk. Palmleaf morningglory and pitted morningglory classification accuracies were greater than 90% for 10 WAE using the 3-class system. Palmleaf morningglory and pitted morningglory at the highest densities of 6 plants/m2produced the highest classification accuracies for the 8-class system once allowed to grow for 10 wk. All other weed species generally produced classification accuracies less than 50%, regardless of planting density. Thus, multispectral imagery has the potential for weed detection, especially when being used in a management system when individual weed species differentiation is not essential, as in the 2-class or 3-class system. However, weed detection was not obtained until 8 to 10 WAE, which is unacceptable in production agriculture. Therefore, more refined imagery acquisition with higher spatial and/or spectral resolution and more sophisticated analyses need to be further explored for this technology to be used early-season when it would be most valuable.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference25 articles.

1. Identification of two southern pine species in high-resolution aerial MSS data;Hughes;Photogramm. Eng. Remote Sens,1986

2. Evaluation of site-specific weed management using a direct-injection sprayer

3. The nature and consequences of weed spatial distribution;Cardina;Weed Sci,1997

4. Weed survey-southern states, broadleaf crops subsection;Proc. South. Weed Sci. Soc,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3