Modeling Glyphosate Resistance Management Strategies for Palmer Amaranth (Amaranthus palmeri) in Cotton

Author:

Neve Paul,Norsworthy Jason K.,Smith Kenneth L.,Zelaya Ian A.

Abstract

A simulation model is used to explore management options to mitigate risks of glyphosate resistance evolution in Palmer amaranth in glyphosate-resistant cotton in the southern United States. Our first analysis compares risks of glyphosate resistance evolution for seven weed-management strategies in continuous glyphosate-resistant cotton monoculture. In the “worst-case scenario” with five applications of glyphosate each year and no other herbicides applied, evolution of glyphosate resistance was predicted in 74% of simulated populations. In other strategies, glyphosate was applied with various combinations of preplant, PRE, and POST residual herbicides. The most effective strategy included four glyphosate applications with a preplant fomesafen application, and POST tank mixtures of glyphosate plusS-metolachlor followed by glyphosate plus flumioxazin. This strategy reduced the resistance risk to 12% of populations. A second series of simulations compared strategies where glyphosate-resistant cotton was grown in one-to-one rotations with corn or cotton with other herbicide resistance traits. In general, crop rotation reduced risks of resistance by approximately 50% and delayed the evolution of resistance by 2 to 3 yr. These analyses demonstrate that risks of glyphosate resistance evolution in Palmer amaranth can be reduced by reducing glyphosate use within and among years, controlling populations with diverse herbicide modes of action, and ensuring that population size is kept low. However, no strategy completely eliminated the risk of glyphosate resistance.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3