Author:
Bangarwa Sanjeev K.,Norsworthy Jason K.,Mattice John D.,Gbur Edward E.
Abstract
Methyl bromide has been widely used as a broad-spectrum fumigant for weed control in polyethylene-mulched bell pepper. However, because of environmental hazards, the phase-out of methyl bromide requires development of alternative weed management strategies. Brassicaceae plants produce glucosinolates which are hydrolyzed to toxic isothiocyanates following tissue decomposition, and therefore can be used as a cultural strategy. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment (‘Seventop’ turnip cover crop vs. fallow) and the effect of initially planted yellow nutsedge tuber density (0, 50, and 100 tubers m−2) on the interference of yellow nutsedge in raised-bed polyethylene-mulched bell pepper. Total glucosinolate production by the turnip cover crop was 12,635 and 22,845 µmol m−2in 2007 and 2009, respectively, and was mainly contributed by shoots. In general, soil amendment with the turnip cover crop was neither effective in reducing yellow nutsedge growth and tuber production nor in improving bell pepper growth and yield compared to fallow plots at any initial tuber density. Averaged over cover crops, increasing initial tuber density from 50 to 100 tubers m−2increased yellow nutsedge shoot density, shoot dry weight, and tuber production ≥ 1.4 times. However, increased tuber density had minimal impact on yellow nutsedge height and canopy width. Compared to weed-free plots, interference of yellow nutsedge reduced bell pepper dry weight and marketable yield ≥ 42 and ≥ 47%, respectively. However, bell pepper dry weight and yield reduction from 50 and 100 tubers m−2were not different. Light was the major resource for which yellow nutsedge competed with bell pepper. Yellow nutsedge shoots grown from initially planted 50 and 100 tubers m−2caused up to 48 and 67% light interception in bell pepper, respectively. It is concluded that yellow nutsedge interference from initial densities of 50 and 100 tubers m−2are equally effective in reducing bell pepper yield and that soil biofumigation with turnip is not a viable management option for yellow nutsedge at these densities.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Reference62 articles.
1. [USEPA] U.S. Environmental Protection Agency. 2008. Ozone Layer Depletion—Regulatory Programs: The Phaseout of Methyl Bromide. Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.
2. [USDA] U.S. Department of Agriculture, Economic Research Service. 2010. Vegetables 2009 Summary. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2010.pdf. Accessed: February 19, 2010.
3. Accelerated transformation of the fumigant methyl isothiocyanate in soil after repeated application of metham-sodium
4. Effects of shading on the growth of nutsedges (Cyperus spp.);Santos;Weed Sci,1997
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献