Developing an Empirical Yield-Prediction Model Based on Wheat and Wild Oat (Avena fatua) Density, Nitrogen and Herbicide Rate, and Growing-Season Precipitation

Author:

Wagner N. C.,Maxwell B. D.,Taper M. L.,Rew L. J.

Abstract

To develop a more complete understanding of the ecological factors that regulate crop productivity, we tested the relative predictive power of yield models driven by five predictor variables: wheat and wild oat density, nitrogen and herbicide rate, and growing-season precipitation. Existing data sets were collected and used in a meta-analysis of the ability of at least two predictor variables to explain variations in wheat yield. Yield responses were asymptotic with increasing crop and weed density; however, asymptotic trends were lacking as herbicide and fertilizer levels were increased. Based on the independent field data, the three best-fitting models (in order) from the candidate set of models were a multiple regression equation that included all five predictor variables (R2= 0.71), a double-hyperbolic equation including three input predictor variables (R2= 0.63), and a nonlinear model including all five predictor variables (R2= 0.56). The double-hyperbolic, three-predictor model, which did not include herbicide and fertilizer influence on yield, performed slightly better than the five-variable nonlinear model including these predictors, illustrating the large amount of variation in wheat yield and the lack of concrete knowledge upon which farmers base their fertilizer and herbicide management decisions, especially when weed infestation causes competition for limited nitrogen and water. It was difficult to elucidate the ecological first principles in the noisy field data and to build effective models based on disjointed data sets, where none of the studies measured all five variables. To address this disparity, we conducted a five-variable full-factorial greenhouse experiment. Based on our five-variable greenhouse experiment, the best-fitting model was a new nonlinear equation including all five predictor variables and was shown to fit the greenhouse data better than four previously developed agronomic models with anR2of 0.66. Development of this mathematical model, through model selection and parameterization with field and greenhouse data, represents the initial step in building a decision support system for site-specific and variable-rate management of herbicide, fertilizer, and crop seeding rate that considers varying levels of available water and weed infestation.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3