Foliar vs. Root Sensitivity of Hairy Bittercress (Cardamine hirsuta) to Isoxaben

Author:

Wehtje Glenn,Gilliam Charles H.,Miller Michael E.,Altland James E.

Abstract

It has been previously reported that POST-applied isoxaben can effectively control established hairy bittercress. Experiments were conducted to determine the relative importance of root vs. foliar entry of POST-applied isoxaben. At a common isoxaben rate of 0.56 kg/ha, foliar-only and foliar plus soil applications provided 10.5 and 23.3% control, respectively, as determined by fresh weight reduction. In contrast, soil-only application provided 47.0% control. Hairy bittercress foliar absorption of14C–isoxaben did not exceed 15% of the amount applied after 72 h. Therefore, the comparatively less effectiveness of foliar-only applications may be attributed primarily to limited absorption. Minimal isoxaben concentration required to inhibit root growth of hydroponically grown hairy bittercress was 0.0025 mg/L. Higher concentrations were required to produce a response in the foliage. Sorption of isoxaben by pine bark rooting substrate, typical of what is used in container nursery production, exceeded 99% of amount applied after 36 h. Even with 99% sorption, the probable concentration within the aqueous phase remains sufficient to inhibit hairy bittercress root growth. Additional studies with14C–isoxaben established that approximately 35% of the root-absorbed isoxaben was translocated into the foliage. Translocation from the roots into the foliage was reduced to 16% when the experiment was repeated during environmental conditions less favorable for vegetative growth (i.e., longer day length and higher temperature). Results indicate that the control of hairy bittercress with POST-applied isoxaben is likely the result of root absorption and root-growth inhibition. Expression of phytotoxicity within the foliage is also a component, but is dependent upon the root-absorbed isoxaben being translocated into the foliage. Extent of this translocation is dependent upon plant maturity and prevalent environmental conditions.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3