Author:
Armel Gregory R.,Rardon Patrick L.,McComrick Michael C.,Ferry Nancy M.
Abstract
Greenhouse studies were conducted in 2003 at the Stine–Haskell Research Center to determine whether herbicide inhibitors of six specific sites in the carotenoid biosynthesis pathway would elicit synergistic responses when applied postemergence (POST) in combination with the photosystem II (PSII) inhibitor atrazine. Based on data analysis with the Isobole method, synergistic responses were observed on red morningglory, common cocklebur, and giant foxtail when atrazine was applied in mixtures with the deoxy-D-xylulose-5-phosphate reductoisomerase (DOXP reductoisomerase) inhibitor fosmidomycin, thep-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione, and the DuPont proprietary zeta-carotene desaturase (ZDS) inhibitor DFPC. Clomazone (its metabolite ketoclomazone is the actual enzyme inhibitor), an inhibitor of 1-deoxy-D-xylulose-5-phosphate synthatase (DOXP synthase), provided synergistic responses on red morningglory, but antagonistic responses on both common cocklebur and giant foxtail when applied in mixtures with atrazine. Combinations of the lycopene cyclase (LC) inhibitor, CPTA, with atrazine produced synergistic responses on both common cocklebur and giant foxtail but were antagonistic on red morningglory. Norflurazon, a phytoene desaturase (PDS) inhibitor, applied in mixtures with atrazine provided synergistic responses on red morningglory, antagonistic responses on giant foxtail, and independent responses on common cocklebur. Because carotenoids have been determined to play a key role in quenching singlet oxygen species in the chloroplast and also assist in the maintenance of the D1 protein in PSII, this might help explain the synergistic responses with atrazine observed in our studies.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献