Ozone Enhances Adaptive Benefit of Glyphosate Resistance in Horseweed (Conyza canadensis)

Author:

Grantz D. A.,Shrestha A.,Vu H-B.

Abstract

Since the first identification of glyphosate resistance in horseweed in California in 2005, the glyphosate-sensitive (GS) biotype has become rare, whereas the glyphosate-resistant (GR) biotype has become dominant in the eastern San Joaquin Valley (SJV). This is an area exposed to regular usage of glyphosate and to high levels of ambient ground-level ozone (O3). A previous study showed that SJV biotypes of GR are more robust than GS in the absence of ozone. This advantage was reduced, though not eliminated, at elevated O3. This suggests that the rapid evolution of resistance to glyphosate was not linked to evolution of resistance to O3. In this study, we contrasted these responses to O3 in the presence of concurrent glyphosate pressure. The GR and GS biotypes differed in growth and injury, reflecting their known differential sensitivities to glyphosate, but responded similarly to O3 with no O3 × biotype interaction. Ozone imposed an unexpected, but ecologically important, impact that enhanced the performance advantage of GR over GS. In the presence of the combination of glyphosate and O3 the biomass of GR was reduced to low but viable levels, whereas the biomass of GS was reduced to nonviable levels that effectively removed it from the population. These data do not support a genetic linkage between resistance to glyphosate and to O3, but suggest that air pollution may have accelerated the fixation of glyphosate-resistance alleles in California horseweed populations.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference49 articles.

1. Source–sink balance and carbon allocation below ground in plants exposed to ozone

2. Ozone generator, Model SGC-11, Pacific Ozone Technology, Brentwood, CA.

3. Ozone increases root respiration but decreases leaf CO2 assimilation in cotton and melon

4. Flat-fan nozzle, Model XR8002EVS, TeeJet Manufacturing Inc., Wheaton, IL.

5. Analytical balance, Model AE200S; Mettler-Toledo, Inc.; Columbus, OH.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3