Confirmation and Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) in Tennessee

Author:

Norsworthy Jason K.,Jha Prashant,Steckel Lawrence E.,Scott Robert C.

Abstract

Seeds of a suspected glyphosate-resistant giant ragweed biotype from Lauderdale County, TN, were collected from a continuous cotton field in fall 2007 after plants were nonresponsive to multiple glyphosate applications. The objectives of this research were to (1) confirm resistance by quantifying the response of the putative resistant biotype to glyphosate compared to a susceptible biotype from a nonagricultural area, (2) quantify shikimate accumulation over time in both biotypes, and (3) determine the effectiveness of POST-applied herbicides labeled for use in cotton in controlling both biotypes at three growth stages. The susceptible biotype had a 50% lethal dose of 407 g ae/ha of glyphosate compared with 2,176 g/ha for the resistant biotype when treated at the four-node stage, a 5.3-fold level of resistance. The resistant biotype accumulated 3.3- to 9.8-fold less shikimate than the susceptible biotype at 1 to 7 d after treatment. The resistant biotype was less responsive to glyphosate as treatment was delayed past the two-node stage, much more than the susceptible biotype. Glufosinate, MSMA, and diuron controlled both biotypes by at least 90%, regardless of size at application. Prometryn, flumioxazin, carfentrazone-ethyl, fomesafen, and trifloxysulfuron controlled both biotypes by at least 89% when applied at the two-node stage, but control generally diminished with later application timings. Pyrithiobac was not effective in controlling either biotype, regardless of size at application. Hence, there are effective herbicide options for controlling glyphosate-resistant giant ragweed in cotton, and the resistant biotype does not appear to exhibit multiple resistances to other herbicides.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3