Weed Ecology and Nonchemical Management under Strip-Tillage: Implications for Northern U.S. Vegetable Cropping Systems

Author:

Brainard Daniel C.,Peachey R. Edward,Haramoto Erin R.,Luna John M.,Rangarajan Anusuya

Abstract

In northern U.S. vegetable cropping systems, attempts at no-till (NT) production have generally failed because of poor crop establishment and delayed crop maturity. Strip tillage (ST) minimizes these problems by targeting tillage to the zone where crops are planted while maintaining untilled zones between crop rows, which foster improvements in soil quality. ST has been shown to maintain crop yields while reducing energy use and protecting soils in vegetable crops, including sweet corn, winter squash, snap bean, carrot, and cole crops. Despite potential benefits of ST, weed management remains an important obstacle to widespread adoption. Increased adoption of ST in cropping systems for which effective, low-cost herbicides are either limited (e.g., most vegetable crops) or prohibited (e.g., organic systems) will require integration of multiple cultural, biological, and mechanical approaches targeting weak points in weed life cycles. Weed population dynamics under ST are more complex than under either full-width, conventional tillage (CT) or NT because weed propagules—as well as factors influencing them—can move readily between zones. For example, the untilled zone in ST may provide a refuge for seed predators or a source of slowly mineralized nitrogen, which affects weed seed mortality and germination in the tilled zone. Greater understanding of such interzonal interactions may suggest manipulations to selectively suppress weeds while promoting crop growth in ST systems. Previous studies and recent experiences in ST vegetable cropping systems suggest a need to develop weed management strategies that target distinct zones while balancing crop and soil management tradeoffs. For example, in untilled zones, optimal management may consist of weed-suppressive cover crop mulching, combined with nitrogen exclusion and high-residue cultivation as needed. In contrast, weed management in the tilled zone may benefit from innovations in precision cultivation and flame-weeding technologies. These short-term strategies will benefit from longer-term approaches, including tillage-rotation, crop rotation, and cover cropping strategies, aimed at preventing seed production, promoting seed predation and decay, and preventing buildup of problematic perennial weeds. However, a concerted research effort focused on understanding weed populations as well as testing and refining integrated weed management strategies will be necessary before ST is likely to be widely adopted in vegetable cropping systems without increased reliance on herbicides.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference103 articles.

1. Estimates of nitrous oxide emissions from agricultural fields over 28 months

2. Innovation in mechanical weed control in crop rows

3. ‘Beetle banks' as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric. For;MacLeod;Entomol,2004

4. Green J. 2010. Structuring Habitat to Conserve Ground Beetles (Coleoptera: Carabidae) and Reduce Summer Annual Weeds in Agroecosystems. MS thesis. Corvallis, OR : Oregon State University. http://hdl.handle.net/1957/19544.

5. Potential of Air-Propelled Abrasives for Selective Weed Control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3