Evolution of Glyphosate-Resistant Crop Technology

Author:

Green Jerry M.

Abstract

New and improved glyphosate-resistant (GR) crops continue to be rapidly developed. These crops confer greater crop safety to multiple glyphosate applications, higher rates, and wider application timings. Many of these crops will also have glyphosate resistance stacked with traits that confer resistance to herbicides with other modes of actions to expand the utility of existing herbicides and to increase the number of mixture options that can delay the evolution of GR weeds. Some breeding stacks of herbicide resistance traits are currently available, but the trend in the future will be to combine resistance genes in molecular stacks. The first example of such a molecular stack has a new metabolically based mechanism to inactivate glyphosate combined with an active site-based resistance for herbicides that inhibit acetolactate synthase (ALS). This stack confers resistance to glyphosate and all five classes of ALS-inhibiting herbicides. Other molecular stacks will include glyphosate resistance with resistance to auxin herbicides and herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) and 4-hydroxyphenyl pyruvate dioxygenase (HPPD). Scientists are also studying a number of other herbicide resistance transgenes. Some of these new transgenes will be used to make new multiple herbicide-resistant crops that offer growers more herbicide options to meet their changing weed management needs and to help sustain the efficacy of glyphosate.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference98 articles.

1. Resistance cost of a cytochrome P450 herbicide-metabolism but not an ACCase target site mutation in multiple resistant Lolium rigidum populations;Via-Ajub;New Phytol.,2007

2. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens

3. Ellis J. M. , Trolinder L. , Baker S. , and Holloway J. 2008. Glytol cotton—new herbicide tolerant cotton from Bayer CropScience. in. Proceedings of the Southern Beltwide Cotton Conference. Memphis, TN National Cotton Council of America. In press.

4. PPO-inhibiting herbicide resistance, trade name AcuronTM, Syngenta Seeds, Syngenta Seeds, 7500 Olson Memorial Highway, Golden Valley, MN 55427.

5. Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase;Fukumori;J. Biol. Chem.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3