Influence of photoperiod and temperature on vegetative growth and development of Florida betony (Stachys floridana)

Author:

McElroy J. Scott,Yelverton Fred H.,Neal Joseph C.,Rufty Thomas W.

Abstract

Experiments were conducted in environmental chambers to the evaluate effects of photoperiod and temperature on Florida betony growth and development. Plants were exposed to two photoperiods, short day (9 h) and long day (9 + 3 h night interruption), and three day/night temperature regimes, 18/14, 22/18, and 26/22 C. After 10 wk of growth, shoot length and weight were 3.4 and 3.5 times greater, respectively, in the long-day photoperiod and with the 26 and 22 than with the 22 and 18 C day and night temperature regime, respectively. Shoot number, however, was greatest in the short-day photoperiod and at a lower temperature of 22/18 C. Shoot number in long day 22/18 C and 26/22 C environments increased asymptotically. No difference in root weight was observed between long- and short-day environments, but root weight increased with increasing temperature. Flowering and tuber production only occurred in long-day environments, with greater production of both at higher temperatures. Results provide a general framework for understanding Florida betony growth and development characteristics in the field and provide insights that should be considered in developing control strategies.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference16 articles.

1. Phytotron Procedure Manual. 1991. North Carolina State University, North Carolina Agricultural Research Service, Raleigh, NC. Technical Bulletin 244. www.ncsu.edu/phytotron.

2. State Climate Office of North Carolina. 2003. Climate Normals, Means, and Extremes for Wilmington, NC. www.nc-climate.ncsu.edu.

3. Control of Florida betony (Stachys floridana Shuttlew.) emerging from tubers;Noricini;J. Environ. Hortic,1995

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3