Effect of Soil Organic Matter Content and Volumetric Water Content on ‘Tifway 419’ Hybrid Bermudagrass Growth Following Indaziflam Applications

Author:

Jeffries Matthew D.,Gannon Travis W.

Abstract

Indaziflam is a cellulose biosynthesis–inhibiting herbicide for PRE annual weed control in turfgrass systems. Since indaziflam's 2010 U.S. registration, sporadic cases of hybrid bermudagrass injury have been reported; however, causes are not well understood. Field research was conducted from 2013 to 2015 on sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on plant growth following indaziflam application on established or root-compromised (5 cm long) hybrid bermudagrass. The effect of SOMC was evaluated at two levels, 1.4 (low) and 5.5% (high) w/w at the soil surface (0 to 2.5 cm depth), whereas SVWC was evaluated PRE (2 wk before) and POST (6 wk after) indaziflam application at two levels (low or high). Indaziflam was applied (50 or 100 g ai ha−1) at fall-only, fall-plus-spring, and spring-only timings. Regardless of application timing or SVWC, indaziflam applied at 50 g ha−1 to high SOMC did not cause > 10% visual cover reduction on established or root-compromised hybrid bermudagrass. Indaziflam applied to hybrid bermudagrass on low SOMC exacerbated adverse growth effects, most notably when root systems were compromised before application. Overall, PRE indaziflam application SVWC did not affect hybrid bermudagrass growth. Within low SOMC, low POST indaziflam application SVWC caused less visual hybrid bermudagrass cover reduction than did high POST indaziflam application SVWC, whereas both fall-plus-spring and spring-only application timings caused similarly greater reductions than fall-only indaziflam application. Data from this research will aid turfgrass managers to effectively use indaziflam without adversely affecting hybrid bermudagrass growth.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3