Response of Wine Grape Cultivars to Simulated Drift Rates of 2,4-D, Dicamba, and Glyphosate, and 2,4-D or Dicamba Plus Glyphosate

Author:

Mohseni-Moghadam Mohsen,Wolfe Scott,Dami Imed,Doohan Douglas

Abstract

Greenhouse experiments were conducted at Wooster, OH, during 2010 and 2011 growing seasons to evaluate the responses of five wine grape cultivars to sublethal doses of 2,4-D, dicamba, and glyphosate, and the ‘Riesling’ grape to mixtures of 2,4-D plus glyphosate and dicamba plus glyphosate. Treatments were made using a spray system calibrated to deliver 0.757 L min−1at 276 kPa and 4.8 km h−1. Herbicides were delivered through 8002 flat spray nozzles and applied at 1/30, 1/100, and 1/300 of the recommended field rate of 840, 560, and 840 g ae ha−1for 2,4-D, dicamba, and glyphosate, respectively. Injury was observed in all treatments 7 d after treatment (DAT). However, injury symptoms greater than 10% were observed 42 DAT in plants treated with 2,4-D at all rates and plants treated with dicamba at the two highest rates. Injury (35%) at 357 DAT was noted only in plants treated with the highest rate of 2,4-D. French hybrids showed slightly less injury symptoms compared with wine grapes at 7 and 42 DAT. Shoot length reduction in plants treated with 2,4-D at the highest rate was 43, 84, and 16% at 7, 42, and 357 DAT, respectively. Glyphosate caused the fewest injury symptoms in Riesling compared with 2,4-D and dicamba when applied separately or tank mixed with glyphosate. Shoot length reduction in Riesling was observed 42 DAT with all rates of 2,4-D, with and without glyphosate and dicamba, and dicamba plus glyphosate at the highest rate; however, at 357 DAT, no effect was observed in shoot length. Spray drift of 2,4-D and dicamba can severely injure grapes, with injury increasing with increased exposure. The combination of 2,4-D plus glyphosate caused greater injury and shoot length reduction in grapes than glyphosate applied alone.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3