Delayed Glyphosate Application for No-Till Fallow in the Driest Region of the Inland Pacific Northwest

Author:

Lutcher Larry K.

Abstract

Farmers typically use three applications of glyphosate to control weeds in no-till fallow. Some are now experimenting with an unconventional modification to this widely used approach. This modified approach is based on an intentional delay in the time of the first spraying. Farmers delay their first spraying because they want to rely on competition from winter annual grasses to suppress the growth of Russian thistle and eliminate the need for a third application. Optimism for this kind of weed-control program is tempered by concerns related to soil water storage. The objective of this research was to evaluate effects of delayed control of downy brome and volunteer winter wheat on the plant-available water content of, and loss of water from, no-till fallow. Treatments, applied to plots arranged in a randomized complete block design with four replications, were distinguished by the time of the initial glyphosate application.The initial early-season treatment was applied as soon as possible after emergence of downy brome and volunteer winter wheat. Initial mid-season and late-season treatments were applied 4 and 6 wk later, respectively. The amount of plant-available water in the soil profile ranged from 71.8 to 153.7 mm in May and 16.5 to 80.9 mm in September. Water loss was usually minimized in plots treated with the initial early-season treatment. An exception to this trend occurred at a site where the density of downy brome and volunteer winter wheat was greater than average. Abated water loss from the initial late-season treatment, at this site, may have been a consequence of reduced evaporation caused by a decrease in near-surface wind speed and deflection of solar radiation away from soil. Estimated impacts of water loss on grain yield of winter wheat, produced the year after fallow, range from 269 to 600 kg ha−1.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3